Recent Publication is Now Featured on “Advances in Engineering” as a Key Scientific Article

Advances in Engineering—which recognizes important findings in engineering fields and reports timely engineering research news—has recently labeled a research work that came from Professor Ning Yan’s group as a “key scientific article contributing to science and engineering research excellence.”

Report link:

This work was done by University of Toronto researchers: Heyu Chen (PhD candidate), Dr. Sandeep Nair, Dr. Prashant Chauhan and led by distinguished professor, Prof. Ning Yan; they investigated the effect of lignin-containing nanocellulose (LCNF) on the reinforcing performance of pMDI wood adhesives. As concluded by Advances in Engineering: “Sustainable LCNF from renewable biomass will advance the development of high-performance pMDI adhesives for wider practical applications.”

For further information, this work is published in Chemical Engineering Journal.

Chen, H., Nair, S., Chauhan, P., & Yan, N. (2019). Lignin containing cellulose nanofibril application in pMDI wood adhesives for drastically improved gap-filling properties with robust bonding line interfaces. Chemical Engineering Journal, 360, 393-401.

Recent article from Dr. Tanguy accepted in ACS Applied Materials & Interfaces

In this article, Dr. Tanguy and Prof. Yan, in collaboration with M.S. Whiltshire, Prof. Arjmand and Prof. Zarifi from the University of British Columbia reported the design of novel sensors for the contactless detection of ammonia gas at concentration as low as 1 ppm.

Abstract: Ammonia is a key-compound in a variety of industrial sectors, including automotive, chemical and food. Its hazardous effects on the environment and human health require the implementation of proper safety guidelines and monitoring techniques. An attractive approach is to add sensing functionality to low-cost wireless communication devices to allow for the monitoring/mapping of the chemical environment across a large area. This study outlines a highly sensitive contactless ammonia gas sensor with the potential for the continuous and wireless mapping of ammonia emissions by integrating an antenna on the device. The devices were fabricated by casting a novel advanced sensing nanocomposite, polyaniline (PANI) and phosphate functionalized reduced graphene oxide (P-rGO) on split-ring resonators (SRRs). P-rGO incorporation in PANI produced a positive sensing synergistic effect to multiply the sensing response severalfold to ammonia and dimethylamine gases. Furthermore, we identified that the modification of the semiconductive behavior of the nanosheets, achieved via phosphate functionalization, is the key factor to the positive sensing synergy observed in the nanocomposites due to the formation of localized heterojunctions. The prepared SRRs exhibited remarkably low detection limit, ~1 ppm, to ammonia gas, as well as good stability and selectivity, which paves the path for a novel generation of wireless, chipless, potentially fully printable and passive sensor platforms.

Congratulations to Dr. Tanguy for his recent publication in Chemical Communications

In this communication, Dr. Tanguy together with Ms. N’Diaye, Prof. Arjmand, Prof, Lian and Prof. Yan reported a facile functionalization method of reduced graphene oxide to improve the electrochemical capacitance.

Abstract: Phosphate functionalized carbon nanomaterials have attracted significant attention because of their potential applications in energy storage applications. Herein we report a facile one-pot method to prepare water dispersible phosphate functionalized reduced graphene oxide and demonstrate the potential of the novel materials for energy storage applications. The synthesis method shows promise to promote a wider adoption of reduced graphene oxide for high performance applications.