New Article:Enhancing performance of phosphorus containing vanillin-based epoxy resins by P-N non-covalently functionalized graphene oxide nanofillers

A new article out of Ning Yan’s lab has been published in Composites Part B: Engineering written by Pitchaimari Gnanasekar, Heyu Chen, Nicole Tratnik, Martin Feng and Ning Yan.

Click here to view the full article.


            In this study, non-covalently functionalized graphene oxide (FGO) containing phosphorus and nitrogen was synthesized using dibenzyl N,N’-diethyl phosphoramidite (DDP)via a single step process. Meanwhile, novel bio-based phosphorus containing vanillin epoxy resin (VPE) was made via a two-step process and used as a flame-retardant adhesive. Subsequently, FGO was dispersed in the epoxy resin matrix at different weight ratios as reinforcement for improving mechanical, thermal and flame-retardant properties of the resultant composite systems. Curing behavior of the VPE and FGO mixtures with 4,4’-diaminodiphenylsulfone (DDS) as the crosslinker was investigated using a Differential Scanning Calorimeter (DSC). Thermal and flame-retardant properties of the cured VPE/FGO nanocomposites were systematically investigated by Thermogravimetric Analysis (TGA), Gas Chromatography – Mass Spectrometry (GC-MS), Limited Oxygen Index (LOI), vertical burning test (UL-94), and cone calorimeter test. Results indicated that all VPE/FGO nanocomposites exhibited excellent thermal and flame-retardant properties. In particular, VPE with 9wt% of FGO achieved the highest LOI value (29.1%) and passed the V-0 rating in the UL-94 test. Furthermore, cone calorimetry test showed that flame retardancy performance of the VPE and VPE/FGO composites significantly improved compared to vanillin epoxy control resin without phosphorus. The gaseous and high boiling pyrolysis products of VPE cured by DDS were collected and characterized by GC/MS to reveal their formation mechanisms. The char layers of the cued VPE showed a high oxidation resistance with intumescent structures. The combined barrier and quenching effects of the char layer imparted VPE with excellent flame retardancy. This study illustrated a promising approach for synthesizing mechanically strong, thermally-stable and environmentally-friendly flame-retardant bio-based composite resins.

New Article: Lignin Cellulose Nanofibrils as an Electrochemically Functional Component for High‐Performance and Flexible Supercapacitor Electrodes

A new article out of Prof. Ning Yan’s lab in collaboration with Prof. Lian’s lab (Materials Engineering) has been published in Chemistry Europe’s ChemSusChem written by Dr. Nicolas Tanguy, Dr. Haoran Wu, Dr. Sandeep Niar, Prof. Keryn Lian and Prof. Ning Yan. This article explores using lignin cellulose nanofibrils in fabricating flexible supercapacitor electrodes for wearable electronics.The article was selected as Very Important Paper by the Editors of the journal, invited for an article in, and for a Cover art as well. More to come!

Click here to view the article


The increasing demand for wearable electronics has driven the development of supercapacitor electrode materials toward enhanced energy density, while being mechanically strong, flexible, as well as environmentally friendly and low‐cost. Taking advantage of faradaic reaction of quinone groups in natural lignin that is covalently bound to the high‐strength cellulose nanofibrils, the fabrication of a novel class of mechanically strong and flexible thin film electrodes with high energy storage performance is reported. The electrodes were made by growing polyaniline (PANI) on flexible films composed of lignin‐containing cellulose nanofibrils (LCNF) and reduced graphene oxide (rGO) nanosheets at various loading levels. The highest specific capacitance was observed for the LCNF/rGO/PANI electrode with 20 wt% rGO nanosheets (475 F g−1 at 10 mV s−1 and 733 F g−1 at 1 mV s−1), which represented a 68 % improvement as compared to a similar electrode made without lignin. In addition, the LCNF/rGO(20)/PANI electrode demonstrated high rate performance and cycle life (87 % after 5000 cycles). These results indicated that LCNF functioned as an electrochemically active multifunctional component to impart the composite electrode with mechanical strength and flexibility and enhanced overall energy storage performance. LCNF/rGO(20)/PANI electrode was further integrated in a flexible supercapacitor device, revealing the excellent promise of LCNF for fabrication of advanced flexible electrodes with reduced cost and environmental footprint and enhanced mechanical and energy storage performances.

Article Chosen as Green Chemistry Editor’s Choice

The article Barking up the right tree: biorefinery from waste stream to cyclic carbonate with immobilization of CO2 for non-isocyanate polyurethanes by Heyu Chen, Prashant Chauhan and Ning Yan has been selected by editor Buxing Han to be highlighted as a Green Chemistry Editor’s Choice.

The blog post showcasing the publication can be found here and is publically accessible until Feb 2021.