New Article: Functionalized lignin nanoparticles for producing mechanically strong and tough flame-retardant polyurethane elastomers

A new article out of Ning Yan’s lab has been published in the International Journal of Biological Macromolecules about functionalized lignin nanoparticles written by Hetian, Fangeng Chen, Wenxiang Zhu and Ning Yan.

Click here to view the full article for free until June 16, 2022.

Abstract
There is a strong interest in developing environmentally friendly synthesis approaches for making polyurethane elastomers (PUE) with desirable mechanical performance and flame retardancy suitable for a variety of applications. Hence, in this study, a novel nano functionalized lignin nanoparticle (Nano-FL) containing nitrogen (N) and phosphorus (P) moieties was developed via mild grafting reactions combined with the ultrasound method. The Nano-FL incorporated in the PUE acted as both crosslinking agents and flame retardants. The novel Nano-FL showed good compatibility and dispersibility in the PUE matrix, thereby overcoming the weakening effect of adding traditional lignin flame retardants on the mechanical properties of the PUE materials. PUE/Nano-FL exhibited strong tensile properties. Compared with control neat PUE, with 10 wt% of Nano-FL addition, the PUE attained a limiting oxygen index as high as 29.8% and it also passed the UL-94 V-0 rating. Furthermore, Cone Calorimetry Test (CCT) showed that the addition of Nano-FL not only reduced the heat release rate and the total heat release but also decreased the total smoke production rate during combustion. The char residues of PUEs with Nano-FL showed a high oxidation resistance with dense and continuous structural morphologies. The combined barrier and quenching effects of the char layer provided excellent flame retardancy performance. The novel Nano-FL developed in this study showed excellent promises as green functional additives for enhancing mechanical, thermal and flame retardancy performance of a wide range of polymers.