New Article: Starch Maleate/Epoxidized Soybean Oil/Polylactic Acid Films with Improved Ductility and Biodegradation Potential for Packaging Fatty Foods

A new article out of Ning Yan’s lab has been published in the ACS Sustainable Chemistry & Engineering Journal about new sustainable packaging for Fatty Foods written by Shrestha Roy Goswami, Sandeep Sudnakaran Nair, Xiao Zhang, Nicolas R. Tanguy, and Ning Yan.

Click here to obtain an e-print of the full article for free for the first 50 people within the next year.


The commercial marketability of polylactic acid (PLA) food packaging films is limited by their poor ductility and biodegradation ability. To address these challenges, a high-DS amylose-rich corn starch maleate (SM)/epoxidized soybean oil (ESO)/PLA composite film was developed. The film demonstrated significant ductility improvement (elongation at break increased from ≈3.63 to 36.75% while the tensile toughness improved 15-fold compared to the neat PLA film) because of improved interfacial interactions and mobility of ESO-plasticized PLA chains. Furthermore, due to absence of voids, the SM/ESO/PLA film also outperformed the ESO/PLA film in terms of oxygen (23,140 cm3 μm m–2 day–1 Pa–1) and water vapor (0.03 × 10–5 g m–1 day–1 Pa–1) barrier performances. These characteristics, together with findings that the SM/ESO/PLA film could rapidly breakdown in saline water (2.92 wt % per day) and compost (the C/N ratio increased from 20.4 to 22.69), as well as absence of ESO migration in fatty food simulants, make the SM/ESO/PLA film a promising material for food packaging.

New Article: Recyclable, self-strengthening starch-based epoxy vitrimer facilitated by exchangeable disulfide bonds

A new article out of Ning Yan’s lab has been published in the Chemical Engineering Journal about a self-strengthening, recyclable, starch-based epoxy vitrimer written by Nicole Tratnik, Nicolas R. Tanguy, and Ning Yan.

Click here to view the full article for free until October 5th, 2022.


Epoxy vitrimers have emerged as a new class of self-healing, recyclable, and reprocessable materials, offering new opportunities to traditional epoxy thermosets by improving life-span, while providing additional functionalities. Nevertheless, retaining 100 % of the original mechanical performances remains difficult for vitrimers after several reprocessing cycles due to progressive changes in the vitrimer networks during rearrangements. In this study, we designed a novel epoxy vitrimer with a higher renewable content compared to conventional epoxies by using renewable materials. The bio-based epoxy vitrimer was synthesized from epoxidized starch amylopectin together with diallyl disulfide, that is naturally found in garlic, and a thiol (pentaerythritol tetrakis(3-mercaptopropionate) (PETMP)). Diallyl disulfide and PETMP enabled the formation of a recyclable, and reprocesseable, vitrimer network. The epoxy vitrimer displayed unprecedented self-strengthening after 5 recycling cycles (tensile strength increased over 900 %) caused by the mechanically-induced homogeneization of the diallyl disulfide/thiol and the starch epoxy ghost granule phases during the recycling process, thereby increasing the vitrimer cross-linking density during reformation. Reprocessing the vitrimer 5-times improved the mechanical and thermal properties, raising glass transition temperature, Young’s modulus, and tensile strength from 7 °C to 25 °C, 2.98 MPa to 268 MPa, and 1.87 MPa to 18.47 MPa, respectively. Hence, capitalizing on mechanically-induced phase homegeneization during the vitrimer reprocessing, this work introduces a strategy for the design of self-strengthening bio-based and recyclable thermosets.

New Article: Natural lignocellulosic nanofibrils as tribonegative materials for self-powered wireless electronics

A new article out of Ning Yan’s lab has been published in Nano Energy about lignocellulosic nanofibrils used in triboelectric nanogenerators written by Nicolas R. Tanguy, Masud Rana, Asif A. Khan, Nicole Tratnik, Heyu Chen, Dayan Ban and Ning Yan.

Click here to view the full article for free until June 24, 2022.


Triboelectric nanogenerators (TENGs) are promising energy harvesting devices for powering next generation wearable electronics. TENGs performance are largely determined by the triboelectric effect between the tribonegative and tribopositive layers. To date, fluorine-containing petroleum-based polymers, such as polytetrafluoroethylene (PTFE), remain the most popular choice as tribonegative layer due to their high tribonegativity against various materials during frictional contact. We report for the first time a natural wood-derived lignocellulosic nanofibrils (LCNF) tribolayer that could replace fluorine-containing petroleum-based polymers as a tribonegative material for TENGs. The high tribonegativity was due to the presence of natural lignin on the surface of LCNF and LCNF’s nanofibril morphology. The LCNF nanopaper-based TENGs produced significantly higher voltage (~160%) and current (~120%) than TENGs with PTFE as the tribonegative material when paired with various polymeric/metallic tribolayers. Furthermore, assembling LCNF nanopaper as the tribonegative layers into a cascade TENG generated an output sufficient for powering a wireless communication node, capable of sending a radio-frequency signal to a smartphone every 3 min. This study demonstrates the excellent promises of using LCNF to make high-performance and more environmentally friendly wireless self-powered electronics; and thus pinpoints a new approach for fabricating sustainable triboelectric nanogenerators using natural lignocellulosic materials instead of conventional fluorine-containing petroleum-based polymers as tribonegative layers.

New Article: Functionalized lignin nanoparticles for producing mechanically strong and tough flame-retardant polyurethane elastomers

A new article out of Ning Yan’s lab has been published in the International Journal of Biological Macromolecules about functionalized lignin nanoparticles written by Hetian, Fangeng Chen, Wenxiang Zhu and Ning Yan.

Click here to view the full article for free until June 16, 2022.

There is a strong interest in developing environmentally friendly synthesis approaches for making polyurethane elastomers (PUE) with desirable mechanical performance and flame retardancy suitable for a variety of applications. Hence, in this study, a novel nano functionalized lignin nanoparticle (Nano-FL) containing nitrogen (N) and phosphorus (P) moieties was developed via mild grafting reactions combined with the ultrasound method. The Nano-FL incorporated in the PUE acted as both crosslinking agents and flame retardants. The novel Nano-FL showed good compatibility and dispersibility in the PUE matrix, thereby overcoming the weakening effect of adding traditional lignin flame retardants on the mechanical properties of the PUE materials. PUE/Nano-FL exhibited strong tensile properties. Compared with control neat PUE, with 10 wt% of Nano-FL addition, the PUE attained a limiting oxygen index as high as 29.8% and it also passed the UL-94 V-0 rating. Furthermore, Cone Calorimetry Test (CCT) showed that the addition of Nano-FL not only reduced the heat release rate and the total heat release but also decreased the total smoke production rate during combustion. The char residues of PUEs with Nano-FL showed a high oxidation resistance with dense and continuous structural morphologies. The combined barrier and quenching effects of the char layer provided excellent flame retardancy performance. The novel Nano-FL developed in this study showed excellent promises as green functional additives for enhancing mechanical, thermal and flame retardancy performance of a wide range of polymers.

New Article: Anisotropic cellulose nanocrystal hydrogel with multi-stimuli response to temperature and mechanical stress

A new article out of Ning Yan’s lab has been published in Carbohydrate Polymers about anisotropic cellulose nanocrystal hydrogel written by Liu Liu, Nicolas R.Tanguy, Ning Yan, Yiqiang Wu, Xiubo Liu, and Yan Qing

Click here to view the full article.


Unlabelled Image

Conventional hydrogels with isotropic polymer networks usually lack selective response to external stimuli and that limits their applications in intelligent devices. Herein, hydrogels with distinctive anisotropic optical characteristics combined with thermosensitivity were prepared through in situ photopolymerization. Self-assembled cellulose nanocrystals (CNCs) with chiral nematic ordered structure were embedded in polyethylene glycol derivatives/polyacrylamide polymer networks. The arrangement of CNCs showed a strong dependence on the self-assembly angle and standing time, enabling the fabrication of hydrogels with customizable CNCs arrangements. Increasing the self-assembly angle from 0° to 90° changed the CNCs arrangement from chiral nematic to symmetrical nematic order which, together with CNCs dynamic arrangement from isotropic to annealed chiral nematic phase at longer standing time, provided versatile ways to produce CNCs hydrogels with tunable anisotropic properties. In addition, the obtained hydrogel displayed reversible temperature and compression response, showing excellent promise to be used as soft mechanical stress and temperature sensors or novel anti-counterfeiting materials.

New Article: Recent Progress on Starch Maleate/Polylactic Acid Blends for Compostable Food Packaging Applications

A new review article out of Ning Yan’s lab has been published in ACS Sustainable Chemistry & Engineering about the progress on startch maleats and polylactic acid blends for food packaging written by Shrestha Roy Goswami, Sandeep Sudhakaran Nair, Sen Wang, and Ning Yan

For the first 12 months of publication, 50 free e-prints are available for interested colleagues.
Click here to see the article and get your free e-print.


Starch maleate/polylactic acid blends could replace polyethylene terephthalate in food packaging films. These films, however, are not acceptable for commercial use due to their poor performance, which is caused by processing polylactic acid with starch maleates having a low degree of maleic anhydride substitutions (DSNMR < 0.1 or DStitration < 1). Conventionally produced starch maleates produced via dry grinding or as aqueous and nonaqueous dispersions acquire a low DS due to the presence of inactive hydroxyl and maleic anhydride groups in each of the reaction systems. Low-DS starch maleates could barely interact with polylactic acid and plasticizers during blend processing; consequently, the resultant films perform poorly in terms of ductility and compostability. The key findings of this perspective indicate that recyclable ionic liquids like 1-allyl-3-methylimidazolium chloride could disrupt H-bonds among hydroxyls of starch and catalyze in situ maleic anhydride ring openings to provide functional groups for the synthesis of high-DS starch maleates (DSNMR ≥ 0.1 or DStitration ≥ 1). Improved interfacial chain interactions between high-DS starch maleates/polylactic acid and plasticizers like epoxidized soybean oil could facilitate stress-transfer and enzymatic activities of the resultant film, potentially improving its ductility and compostable properties. Besides these promising findings, this perspective also emphasizes the need for further research into identifying a wide range of ionic liquids and compostable plasticizers for producing high-DS starch maleates/polylactic acid blends, assessing the effect of interfacial chain interactions on properties of the resultant film, and determining specific usage of the film based on the barrier properties measured using standardized techniques.

New Article:Enhancing performance of phosphorus containing vanillin-based epoxy resins by P-N non-covalently functionalized graphene oxide nanofillers

A new article out of Ning Yan’s lab has been published in Composites Part B: Engineering written by Pitchaimari Gnanasekar, Heyu Chen, Nicole Tratnik, Martin Feng and Ning Yan.

Click here to view the full article.


            In this study, non-covalently functionalized graphene oxide (FGO) containing phosphorus and nitrogen was synthesized using dibenzyl N,N’-diethyl phosphoramidite (DDP)via a single step process. Meanwhile, novel bio-based phosphorus containing vanillin epoxy resin (VPE) was made via a two-step process and used as a flame-retardant adhesive. Subsequently, FGO was dispersed in the epoxy resin matrix at different weight ratios as reinforcement for improving mechanical, thermal and flame-retardant properties of the resultant composite systems. Curing behavior of the VPE and FGO mixtures with 4,4’-diaminodiphenylsulfone (DDS) as the crosslinker was investigated using a Differential Scanning Calorimeter (DSC). Thermal and flame-retardant properties of the cured VPE/FGO nanocomposites were systematically investigated by Thermogravimetric Analysis (TGA), Gas Chromatography – Mass Spectrometry (GC-MS), Limited Oxygen Index (LOI), vertical burning test (UL-94), and cone calorimeter test. Results indicated that all VPE/FGO nanocomposites exhibited excellent thermal and flame-retardant properties. In particular, VPE with 9wt% of FGO achieved the highest LOI value (29.1%) and passed the V-0 rating in the UL-94 test. Furthermore, cone calorimetry test showed that flame retardancy performance of the VPE and VPE/FGO composites significantly improved compared to vanillin epoxy control resin without phosphorus. The gaseous and high boiling pyrolysis products of VPE cured by DDS were collected and characterized by GC/MS to reveal their formation mechanisms. The char layers of the cued VPE showed a high oxidation resistance with intumescent structures. The combined barrier and quenching effects of the char layer imparted VPE with excellent flame retardancy. This study illustrated a promising approach for synthesizing mechanically strong, thermally-stable and environmentally-friendly flame-retardant bio-based composite resins.

New Article: Lignin Cellulose Nanofibrils as an Electrochemically Functional Component for High‐Performance and Flexible Supercapacitor Electrodes

A new article out of Prof. Ning Yan’s lab in collaboration with Prof. Lian’s lab (Materials Engineering) has been published in Chemistry Europe’s ChemSusChem written by Dr. Nicolas Tanguy, Dr. Haoran Wu, Dr. Sandeep Niar, Prof. Keryn Lian and Prof. Ning Yan. This article explores using lignin cellulose nanofibrils in fabricating flexible supercapacitor electrodes for wearable electronics.The article was selected as Very Important Paper by the Editors of the journal, invited for an article in, and for a Cover art as well. More to come!

Click here to view the article


The increasing demand for wearable electronics has driven the development of supercapacitor electrode materials toward enhanced energy density, while being mechanically strong, flexible, as well as environmentally friendly and low‐cost. Taking advantage of faradaic reaction of quinone groups in natural lignin that is covalently bound to the high‐strength cellulose nanofibrils, the fabrication of a novel class of mechanically strong and flexible thin film electrodes with high energy storage performance is reported. The electrodes were made by growing polyaniline (PANI) on flexible films composed of lignin‐containing cellulose nanofibrils (LCNF) and reduced graphene oxide (rGO) nanosheets at various loading levels. The highest specific capacitance was observed for the LCNF/rGO/PANI electrode with 20 wt% rGO nanosheets (475 F g−1 at 10 mV s−1 and 733 F g−1 at 1 mV s−1), which represented a 68 % improvement as compared to a similar electrode made without lignin. In addition, the LCNF/rGO(20)/PANI electrode demonstrated high rate performance and cycle life (87 % after 5000 cycles). These results indicated that LCNF functioned as an electrochemically active multifunctional component to impart the composite electrode with mechanical strength and flexibility and enhanced overall energy storage performance. LCNF/rGO(20)/PANI electrode was further integrated in a flexible supercapacitor device, revealing the excellent promise of LCNF for fabrication of advanced flexible electrodes with reduced cost and environmental footprint and enhanced mechanical and energy storage performances.

New Article: Biobased Epoxidized Starch Wood Adhesives: Effect of Amylopectin and Amylose Content on Adhesion Properties

A new article out of Ning Yan’s lab has been published in ACS Sustainable Chemistry and Engineering written by Nicole Tratnik, Pei-Yu Kuo, Nicolas R. Tanguy, Pitchaimari Gnanasekar, and Ning Yan.
In this article studies the effect on amylopectin and amylose content in corn starches on modification through epoxidization and adhesion properties to wood

Click here to view the full article.


Formaldehyde-free, water-resistant, and environmentally friendly wood adhesives were prepared from starches via a simple one-step epoxidation reaction followed by cross-linking using diethylenetriamine. This study focused on the effect of amylose/amylopectin ratio of starch (high amylose, low amylose, and amylopectin) on the epoxidation reaction and on the bonding performance of the prepared epoxidized starches. The epoxidation of starches altered the fluid behavior of the resins, from Newtonian for pristine epoxy to shear thinning, that corroborated the successful integration of starch chains as part of the epoxy resin. Epoxidized amylopectin had the highest viscosity, 114 Pa.s, and a high degree of substitution, 2.33 ± 0.10, among the starches that indicated that amylopectin is more favorable for the grafting of epoxy groups and for the integration of starch chains in epoxy resins compared to the starches with high amylose content. Bonding strengths were determined by lap shear tests on yellow birch specimens in dry, wet, and boiled conditions. High amylopectin epoxidized starch showed the highest lap shear bonding performance under wet conditions (5.50 ± 0.451 MPa). Under boiled conditions, all three epoxidized starches showed equally better performance than the unreacted starch-filled epoxy blends. This study provides fundamental insights into the effect of starch molecular structure on epoxidation reaction and adhesion properties and suggests a promising approach for developing strong formaldehyde-free sustainable biobased wood adhesives.

New Article: Facile synthesize of phosphorus containing sustainable bio molecular platform from vanillin for the production of mechanically strong and highly flame-retardant resins

A new article out of Ning Yan’s lab has been published in ACS Sustainable Chemistry and Engineering written by Pitchaimari Gnanasekar, Martin Feng and Ning Yan

In this article a novel vanillin-based building block was used for synthesizing flame-retardant bio-based epoxy and polyurethane resins.

Click here to view the full article.

Facile Synthesis of a Phosphorus-Containing Sustainable Biomolecular Platform from Vanillin for the Production of Mechanically Strong and Highly Flame-Retardant Resins Pitchaimari Gnanasekar, Martin Feng, Ning Yan*
ACS Sustainable Chem. Eng. 2020, Publication Date: November 18, 2020


A novel chemical architecture, vanillin based phosphorus containing flame-retardant building block (VP)  was successfully synthesized as a sustainable platform biomolecule to be converted into  fire-retardant epoxy (VPE) and polyurethane (VPU) resins for application as environmentally-friendly adhesives. Structural characterizations confirmed the successful functionalization through their molecular structures. A series of VPU and VPE blends were prepared that showed excellent dry and wet bonding strengths and superior self‐extinguishing fire‐retardancy. The highest bonding strength of VPE80 for dry, cold and hot water treatment were noted about 3.64, 3.62 and 3.35 MPa respectively and the best fire‐retardant properties with the maximum LOI value of 29.6% and the lowest heat release rate according to cone calorimetry tests, due to the strong synergistic interpenetrating networks formed between the epoxy and PU macromolecules. The GC-MS analysis of the char residues indicated that the mechanisms for fire-retardancy were a combination of the quenching effect from the phosphorus-containing free radicals and the diluting effect of the non-flammable gases in the gas phase, plus the formation of phosphorus-rich char layers in the condensed phase. This study showcased a highly promising approach to develop environmentally-friendly high-performance fire-retardant chemicals using non-toxic vanillin as the starting material.